
On generalized quantum Turing machine and its language classes

SATOSHI IRIYAMA
Tokyo University of Science

Department of Information Sciences
Yamasaki 2641, Noda City, Chiba

JAPAN
 

MASANORI OHYA
Tokyo University of Science

Department of Information Sciences
Yamasaki 2641, Noda City, Chiba

JAPAN
 

Abstract: Ohya and Volovich have proposed a new quantum computation model with chaotic amplification to
solve the SAT problem, which went beyond usual quantum algorithm. In this paper, we generalize quantum Turing
machine by rewriting usual quantum Turing machine in terms of channel transformation. Moreover, we define
some computational classes of generalized quantum Turing machine and show that we can treat the Ohya-Volovich
(OV) SAT algorithm.
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1 Introduction
The problem whether NP-complete problems can be
P problem has been considered as one of the most im-
portant problems in theory of computational complex-
ity. Various studies have been done for many years.
Ohya and Volovich [1, 2, 11] proposed a new quantum
algorithm with chaotic amplification to solve the SAT
problem, which went beyond usual quantum algo-
rithm. This quantum chaos algorithm enabled to solve
the SAT problem in a polynomial time [1, 2, 3, 11].

In this paper we generalize quantum Turing ma-
chine so that it enables to describe non-unitary evo-
lution of states. This study is based on mathematical
studies of quantum communication channels [4, 5]. It
is discussed in this generalized quantum Turing ma-
chine (GQTM) that we can treat the OV SAT algo-
rithm.

In Section 1, we generalize QTM by rewriting
usual QTM in terms of channel transformation so that
it contains both dissipative and unitary dynamics. In
Section 3, the SAT problem is reviewed and funda-
mental quantum unitary gates are presented. In Sec-
tion 4, based on the papers [3, 7, 12], we concretely
construct the fundamental gates needed for computa-
tion of the SAT problem. In Section 5, we rewrite
the total process including a measurement process and
amplifier process with chaotic dynamics by GQTM.

2 Generalized Quantum Turing Ma-
chine

In this section, we first explain the notations used
in this paper, and mention Classical Turing Ma-

chine(TM or CTM), deterministic TM and multi track
TM brielfy.

2.1 Classical Turing Machine

CTM Mcl is defined by a triplet(Q, Σ, δ), whereΣ
is a finite alphabets with an identified blank symbol
#, Q is a finite set of processor states (with an initial
stateq0 and a set of final states{qF }). CTM has a
processor, a sequence of alphabetsΣ∗ = Σ× · · · ×Σ
called a tape and a tape head. A current state of CTM
called a configuration is represented as

ρ = (q, A, i) ∈ Q × Σ∗ × Z

whereA : Z → Σ is a tape state.
Let δ : Q × Σ → 2Q×Σ×{0,±1} be a transition

function. Note that{0,±1} indicates moving direc-
tion of the tape head of TM. The deterministic TM
has a deterministic transition functionδ : Q × Σ →
Q × Σ ×{0,±1}, that is,δ is a non-branching map,
in other words, the range ofδ for each(q, a) ∈ Q×Σ
is unique. A TMM is called non-deterministic if it
is not deterministic. An-multi track CTM is defined
asMcl = (Q,Σn, δ) likely to above CTM. This hasn
dimensional alphabet set as a tape symbol set.

We also define thed multi-track TM, which tape
symbol is Σ = Σd. A multi-track TM has some
workspaces for calculation, whose tracks are indepen-
dent each other. This independence means that the
TM can operate only one track at one step and all
tracks do not affect each other.
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2.2 Generalized Quantum Turing Machine
Quantum Turing machine (QTM) was introduced by
Deutsch [8] and was studied by many reserchers.
Bernstein and Vazirani showed some theory in CTM
can be expanded to QTM [9] and they proved there
exists universal QTM which computs the functions
given by its codes as input data.

Here, we introduce a Generalized Quantum Tur-
ing machine (GQTM) which contains QTM as a spe-
cial case. We define GQTM by a completely positive
quantum channel (see below) instead of a unitary op-
erator.

GQTM Mgq is defined by quadruplet
(Q, Σ,H, Λδ), where Λδ is a quantum transition
function from a configuration to a configuration.Q
andΣ are represented by a density operator on Hilbert
spaceHQ andHΣ,which are spanned by canonical
basis {|q〉 ; q ∈ Q} and {|a〉 ; a ∈ Σ} , respectively.
A tape configurationA is a sequence of elements of
Σ represented by a density operator on Hilbert space
HΣ spanned by a canonical basis{|A〉 ; A ∈ Σ∗} ,
where Σ∗ is the set of all sequences of alphabets
in Σ. A position of tape head is represented by a
density operator on Hilbert spaceHZ spanned by a
canonical basis{|i〉 ; i ∈ Z}. Then a configurationρ
of GQTM Mgq is described by a density operator in
H ≡ HQ ⊗ HΣ ⊗ HZ . Let S (H) be the set of all
density operators in Hilbert spaceH.

Here, we define the transition function

δ : R × Q × Σ × Q × Σ × Q × Σ × {0,±1}
×Q × Σ × {0,±1} → C.

A quantum transition function is given by a com-
pletely positive (CP) channel

Λδ : S (H) → S (H) ,

satysfying the following condition.

Definition 1 Λδ is called a quantum transition chan-
nel if there exists a transition funtionδ such that for all
quantum configurationρ =

∑
k

λk |ψk〉 〈ψk| , |ψk〉 =∑
l

αk,l |qk,l, Ak,l, ik,l〉 ,
∑

k

λk = 1,∀λk ≥

0,
∑

l

|αk,l|2 = 1,∀αk,l ∈ C, it holds

Λδ (ρ)

=
∑

k,l,p,b,d,p′,b′,d′
δ
(
λk, qk,l, Ak,l (ik,l) , p, b, d, p′, b′, d′

)
× |p,B, ik,l + d〉 〈

p′, B′, ik,l + d′
∣∣

B (j) =
{

b j = ik,l

Ak,l (j) otherwise

B′ (j) =
{

b′ j = ik,l

Ak,l (j) otherwise

where the RHS of the first equation is a state.

Definition 2 Mgq = (Q, Σ,H, Λδ) is called a
LQTM(Linear Quantum Turing Machine) if there ex-
ists a transition funtion

δ : Q × Σ × Q × Σ × Q × Σ × {0,±1}
×Q × Σ × {0,±1} → C

such that for all quantum configurationρk, Λδ is writ-
ten as

Λδ (ρk)

=
∑

l,p,b,d,p′,b′,d′
δ
(
qk,l, Ak,l (ik,l) , p, b, d, p′, b′, d′

)
× |p,B, ik,l + d〉 〈

p′, B′, ik,l + d′
∣∣

where the RHS is a state, and for all quantum config-
uration

∑
k

λkρk, Λδ is affine;

Λδ

(∑
k

λkρk

)
=

∑
k

λkΛδ (ρk)

Definition 3 A GQTM Mgq is called unitary QTM
(UQTM), if the quantum transition channelΛδ is uni-
tary channel implemented:Λδ = AdUδ

. Uδ is given
by, for |ψ〉 = |q, A, i〉 ,

Uδ |ψ〉 = Uδ |q,A, i〉
=

∑
p,b,r

δ (q, A (i) , p, b, d) |p,B, i + d〉

where

δ : Q × Σ × Q × Σ × {0, 1} → C

is a transition function and it satisfies for anyq ∈
Q, a ∈ Σ, q′ ( ̸= q) ∈ Q, a′ (̸= a) ∈ Σ,∑

p,b,d

|δ (q, a, p, b, d)|2 = 1.

∑
p,b,d

δ
(
q′, a′, p, b, d

)∗
δ (q, a, p, b, d) = 0.

Several studies have been done on UQTM whose
transition channel is represented by unitary channel,
in which various theoly and computational classes in
UQTM were discussed in [9, 10].
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Remark 4 For anyq, p ∈ Q, a, b ∈ Σ, d ∈ {0,±1},
defineδ (q, a, p, b, d) = 0 or 1 then UQTM is a rever-
sal CTM.

A chaos amplifier used in [1, 2, 11] is a non-linear
quantum channel, the details of this channel and its
application to the SAT problem will be discussed in
the sequel.

2.3 Computation process of GQTM
Let M = (Q,Σ,H, Λδ) andρ0 = |ψ0〉 〈ψ0| where
|ψ0〉 = |q0, A, 0〉, we call this state is an initial state
andA is an input ofM . Computation of GQTM pro-
ceeds applyingΛδ to ρ0 till the processor state be-
comesqf ∈ {qF }, then it halts. This process is de-
scribed bt the products ofΛδ as

Λδ ◦ · · · ◦ Λδ (ρ0) = ρf

ρf is called a final state in the form

ρf =
∑

k

λkρk +
∑

l

µlσl

∑
k

λk +
∑

l

µl = 1, ∀λk, µl ≥ 0

where σl is a state includes the final (proccessor)
statesqf . We callp =

∑
l

µl a holting probability.

2.3.1 Computational class for GQTM

In this section, we explain the language classes de-
fined by GQTM. LetL be the set of alphabet se-
quences, we call this alanguageif there exists TM
(or GQTM) M that holts with any inputx ∈ L and
doesn’t holtx /∈ L, and we say thatM recognizesL.

Let us review some language classes defined by
CTM.

Definition 5 We say that the language is in class P if
its language is recognized by a deterministic Turing
machine in polynomial time of input size.

Definition 6 We say that the language is in class NP
if there is a non-deterministic Turing machine in poly-
nomial time of input size. Besides, if a languageL1

∈NP andL1 reduces toL2 ∈NP in polynomial time,
a languageL1 is NP-complete.

Definition 7 If languages are accepted by non-
deterministic Turing machine in polynomial time of
input size with a certain probabilityp, then this class
of languages is called a bounded probability polyno-
mial time(BPP).

If there is a polynomial time algorithm to solve it
in the above sense, it implies P=NP. The existence of
such a algorithm is demonstrated in [1, 2, 11] in an
extended quantum domain, as is reviewed in the next
section. We will show that this OV algorithm can be
written by GQTM in the sequel section.

Then, we define therecognitionof GQTM and
some classes of languages.

Definition 8 Given GQTMMgq and a languageL, if
there existsN steps whenMgq recognizesL by the
probability p, we say that the GQTMMgq recognizes
L by the probabilityp and its computational complex-
ity is N .

Definition 9 A languageL is bounded quantum prob-
ability polynomial time GQTM(BGQPP) if there is a
polynomial time GQTMMgq which acceptsL with
probabilityp ≥ 1

2 .

Similarly, we can define the class of languages
BUQPP (=BQPP) and BLQPP corresponding to
UQTM and LQTM, respectively.

In Section 2, it is pointed out that LQTM includes
classical TM, which implies

BPP ⊆ BLQPPL ⊆ BGQPP.

Moreover, if NLQTM accepts the SAT OV algorithm
in polynomial time with probabilityp ≥ 1

2 , then we
may have the inclusion

NP ⊆ BGQPP.

3 SAT Problem
Let X ≡ {x1, . . . , xn} , n ∈ N be a set.xk and its
negationxk (k = 1, . . . , n) are called literals LetX ≡
{x1, . . . , xn} be a set, then the set of all literals is de-
noted byX ′ ≡ X ∪ X = {x1, . . . , xn, x1, . . . , xn}.
The set of all subsets ofX ′ is denoted byF (X ′) and
an elementC ∈ F (X ′) is called a clause. We take a
truth assignment to all variablesxk. If we can assign
the truth value to at least one element ofC, thenC
is called satisfiable. WhenC is satisfiable, the truth
value t (C) of C is regarded as true, otherwise, that
of C is false. Take the truth values as ”true↔1, false
↔0”. ThenC is satisfiable ifft (C) = 1.

Let L = {0, 1} be a Boolean lattice with usual
join ∨ and meet∧, andt (x) be the truth value of a
literal x in X. Then the truth value of a clauseC is
written ast (C) ≡ ∨x∈Ct (x).

Moreover the set C of all clauses
Cj (j = 1, 2, · · · ,m) is called satisfiable iff the meet
of all truth values ofCj is 1; t (C) ≡ ∧m

j=1t (Cj) = 1.
Thus the SAT problem is written as follows:
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Definition 10 SAT Problem: Given a Boolean set
X ≡ {x1, · · · , xn}and a setC = {C1, · · · , Cm} of
clauses, determine whetherC is satisfiable or not.

That is, this problem is to ask whether there exists
a truth assignment to makeC satisfiable. It is known
in usual algorithm that it is polynomial time to check
the satisfiability only when a specific truth assignment
is given, but we can not determine the satisfiability in
polynomial time when an assignment is not specified.

In [3] we discussed the quantum algorithm of the
SAT problem, which was rewritten in [7] with show-
ing that the OM SAT-algorithm is combinatorial. In
[1, 2] it is shown that the chaotic quantum algorithm
can solve the SAT problem in polynomial time.

Ohya and Masuda pointed out [3] that the SAT
problem, hence all other NP problems, can be solved
in polynomial time by quantum computer if the su-
perposition of two orthogonal vectors|0〉 and |1〉 is
physically detected. However this detection is consid-
ered not to be possible in the present technology. The
problem to be overcome is how to distinguish the pure
vector|0〉 from the superposed oneα |0〉 + β |1〉 , ob-
tained by the OM SAT-quantum algorithm, ifβ is not
zero but very small. If such a distinction is possible,
then we can solve the NPC problem in the polyno-
mial time. In [1, 2] it is shown that it can be possi-
ble by combining nonlinear chaos amplifier with the
quantum algorithm, which implies the existence of a
mathematical algorithm solving NP=P. The algorithm
of Ohya and Volovich is not known to be in the frame-
work of quantum Turing algorithm or not. This aspect
is studied in this talk.

4 SAT Algorithm
In this section, we explain the algorithm of the SAT
problem which has been introduced by Ohya-Masuda
[3] and developed by Accardi-Sabbadini [7]. The
computation of the truth value can be done by by
a combination of the unitary operators on a Hilbert
spaceH, so that the computation is described by the
unitary quantum algorithm. The detail of this section
is given in the papers [3, 7, 11, 12].

Throughout this section, letn be the total num-
ber of Boolean variables used in the SAT problem.
Let C be a set of clauses whose cardinality is equal
to m. Let C be the set of all complex numbers, and
|0〉 and |1〉 be the two unit vectors

(
1
0

)
and

(
0
1

)
, re-

spectively. Then, for any two complex numbersα
and β satisfying |α|2 + |β|2 = 1, α |0〉 + β |1〉 is
called a qubit. For any positive integerN , let H be
the tensor product Hilbert space defined as

(
C2

)⊗N

and let
{|ei〉 ; 0 ≤ i ≤ 2N−1

}
be the basis. For any

two qubits|x〉 and |y〉, |x, y〉 and
∣∣xN

〉
is defined as

|x〉 ⊗ |y〉 and|x〉 ⊗ · · · ⊗ |x〉︸ ︷︷ ︸
N times

, respectively.

LetH =
(
C2

)⊗n+µ+1
be a Hilbert space and|v0〉

be the initial state|v0〉 = |0n, 0µ, 0〉, whereµ is the
number of dust qubits which is determined in the pa-
per [12]. LetU (n)

C be a unitary operator for the com-
putation of the SAT:

U
(n)
C |v0〉 =

1√
2n

2n−1∑
i=0

|ei, x
µ, tei (C)〉 ≡ |vf 〉

wherexµ denotes theµ strings in the dust bits and
tei (C) is the truth value ofC with ei.

Applying the above unitary operator to the ini-
tial state, we obtain the final stateρ.The result of the
computation is registered in the last section of the fi-
nal vector, which will be taken out by a projection
Pn+µ,1 ≡ I⊗n+µ ⊗ |1〉 〈1| onto the subspace ofH
spanned by the vectors|εn, εµ, 1〉.

The following theorem is easily seen.

Theorem 11 C is SAT if and only if

Pn+µ,1U
(n)
C |v0〉 ̸= 0

According to the standard theory of quantum
measurement, after a measurement of the event
Pn+µ,1, the stateρ = |vf >< vf | becomes

ρ → Pn+µ,1ρPn+µ,1

TrρPn+µ,1
=: ρ

Thus the solvability of the SAT problem is reduced to
check thatρ′ ̸= 0. The difficulty is that the probability

TrρPn+µ,1 = ∥Pn+µ,1 |vf 〉 ∥2 =
|T (C0)|

2n

is very small in some cases, where|T (C0)| is the car-
dinality of the setT (C0), of all the truth functionst
such thatt(C0) = 1.

We putq ≡ √
r
2n with r ≡ |T (C0)| . Then if r

is suitably large to detect it, then the SAT problem is
solved in polynomial time. However, for smallr, the
probability is very small so that we in fact do not get
an information about the existence of the solution of
the equationt(C0) = 1, hence in such a case we need
further deliberation.

Let go back to the SAT algorithm. After the quan-
tum computation, the quantum computer will be in the
state

|vf 〉 =
√

1 − q2 |ϕ0〉 ⊗ |0〉 + q |ϕ1〉 ⊗ |1〉
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where|ϕ1〉 and|ϕ0〉 are normalizedn+µ qubit states
andq =

√
r/2n. Effectively our problem is reduced

to the following1 qubit problem: The above state|vf 〉
is reduced to the state

|ψ〉 =
√

1 − q2 |0〉 + q |1〉 ,

and we want to distinguish between the casesq = 0
andq > 0(small positive number). Let us denote the
correspondence fromρ0 ≡ |v0〉 〈v0| with ρ by a chan-
nelΛI ; ρ = ΛIρ0.

4.1 Chaotic dynamics
Various aspects of classical and quantum chaos have
been the subject of numerous studies ([4, 11] and ref’s
therein). Here we will briefly review how chaos can
play a constructive role in computation (see [1, 2] for
the details).

Chaotic behavior in a classical system usually is
considered as an exponential sensitivity to initial con-
ditions. It is this sensitivity we would like to use to
distinguish between the casesq = 0 andq > 0 dis-
cussed in the previous subsection.

Consider the so called logistic map which is given
by the equation

xn+1 = axn(1 − xn) ≡ g(x), xn ∈ [0, 1] .

The properties of the map depend on the parametera.
If we take, for example,a = 3.71, then the Lyapunov
exponent is positive, the trajectory is very sensitive to
the initial value and one has the chaotic behavior [2].
It is important to notice that if the initial valuex0 = 0,
thenxn = 0 for all n.

The state|ψ〉 of the previous subsection is
transformed into the density matrix of the form

ρ = q2P1 +
(
1 − q2

)
P0

whereP1 andP0 are projectors to the state vectors|1〉
and|0〉 . One has to notice thatP1 andP0 generate an
Abelian algebra which can be considered as a classical
system. The density matrixρ above is interpreted as
the initial data, and we apply the channelΛ ≡ ΛCA

due to the logistic map as

ΛCA (ρ) =
(I + g (ρ) σ3)

2
,

where I is the identity matrix andσ3 is the z-
component of Pauli matrices.

ρk = Λk
CA (ρ)

To find a proper valuek we finally measure the value
of σ3 in the stateρk such that

Mk ≡ trρkσ3.

We obtain [2]

Theorem 12

ρk =
(I + gk(q2)σ3)

2
, andMk = gk(q2).

Thus the question is whether we can find such
a k in polynomial steps ofn satisfying the inequal-
ity Mk ≥ 1

2 for very small but non-zeroq2. Here we
have to remark that if one hasq = 0 thenρ = P0

and we obtainMk = 0 for all k. If q ̸= 0, the chaotic
dynamics leads to the amplification of the small mag-
nitude q in such a way that it can be detected. The
transition fromρ to ρk is nonlinear and can be consid-
ered as a classical evolution because our algebra gen-
erated byP0 andP1 is abelian. The amplification can
be done within at most 2n steps due to the following
propositions. Sincegk(q2) is xk of the logistic map
xk+1 = g(xk) with x0 = q2, we use the notationxk

in the logistic map for simplicity.

Theorem 13 For the logistic map xn+1 =
axn (1 − xn) with a ∈ [0, 4] and x0 ∈ [0, 1],
let x0 be 1

2n and a setJ be{0, 1, 2, . . . , n, . . . , 2n}. If
a is 3.71, then there exists an integerk in J satisfying
xk > 1

2 .

Theorem 14 Let a and n be the same in above the-
orem. If there existsk in J such thatxk > 1

2 , then
k > n−1

log2 3.71−1 .

Corollary 15 If x0 ≡ r
2n with r ≡ |T (C)| and there

existsk in J such thatxk > 1
2 , then there existsk

satisfying the following inequality ifC is SAT.[
n − 1 − log2 r

log2 3.71 − 1

]
≤ k ≤

[
5
4

(n − 1)
]

.

From these theorems, for allk, it holds

Mk

{
= 0 iff C is not SAT
> 0 iff C is SAT

5 SAT algorithm in GQTM
In this section, we construct the3 multi-track GQTM
MSAT =

(
Q,Σ3,H, Λδ

)
that achieves OVM SAT al-

gorithm. This GQTM doesn’t belongs to LQTM and
UQTM because the chaos amplification process is de-
scribed by a non-linear CP channel not a uitary and
linear one. The OVM algorithm runs from an initial
stateρ0 ≡ |v0〉 〈v0| to ρk throughρ ≡ |vf 〉 〈vf | ex-
plained above. The computation fromρ0 ≡ |v0〉 〈v0|
to ρ ≡ |vf 〉 〈vf | is due to unitary channelΛC ≡
UC • UC , and that fromρ ≡ |vf 〉 〈vf | to ρk is due
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to a non-unitary channelΛk
CA ◦ΛI , so that all compu-

tation can be done byΛk
CA ◦ΛI ◦ΛC , which is a com-

pletely positive, so the whole computation process is
deterministic.

Let us explain our computation by a multi-track
GQTM. The first track stores the input data and liter-
als. The second track is used for the computation of
f (Ci) , (i = 1, · · · ,m), and the thired track is used
for the computation off (C) denoting the result. This
algorithm is represented by the following 5 steps:

• Step 1 : Apply the Hadamard transform to Track
1.

• Step 2 : Calculatef (C1) , · · · f (Cm) and store
them in Track 2.

• Step 3 : Calculatef (C), and store it in Track 3.

• Step 4 : Empty the working space.

• Step 5 : Apply the chaos amplifier to the result
state and repeat this step.

The detail of this quantum algorithm is explained
in the paper [12].

5.1 Computational complexity of the SAT al-
gorithm

We define the computational complexity of the OV

SAT algorithm as the product ofTQ

(
U

(n)
C

)
and

TCA (n) ,whereTQ

(
U

(n)
C

)
is the complexity of uni-

tary computation andTCA (n) is that of chaos ampli-
fication.

The following theorem is essentially discussed in
[2, 3, 12].

Theorem 16 For a set of clausesC and n Boolean
variables, the computational complexity of the OV
SAT algorithm including the chaos amplifier, denoted
byT (C, n), is obtained as follows.

TGQTM (C, n) = TQ

(
U

(n)
C

)
TCA (n) = O (poly (n)) ,

wherepoly (n) denotes a polynomial ofn.

The computational complexity of quantum com-
puter is determined by the total number of logical
quantum gates. This inequality implies that the com-
putational complexity of SAT algorithm is bounded
byO (n) for the size of inputn while a classical algo-
rithm is bounded byO (2n) .
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